Mudanças entre as edições de "Redes Neurais Artificiais"

De Aulas
m (Substituição de texto - "<code c n>" por "<syntaxhighlight lang=c line>")
 
Linha 1: Linha 1:
 
Links relacionados: [[Inteligência Artificial]]
 
Links relacionados: [[Inteligência Artificial]]
 +
 +
= Neurônio Artificial Portas Lógicas em Python =
 +
 +
<syntaxhighlight lang=python line>
 +
"""
 +
PROGRAM: Perceptron
 +
author: Saulo Popov Zambiasi
 +
created: 2019.05.17
 +
modified: 2022.04.28
 +
"""
 +
from random import *
 +
 +
 +
class Perceptron:
 +
    N = 0.01
 +
    epoch = 100
 +
    weight = []
 +
    option = 0
 +
    # example by columns
 +
    # bias (-1) | x1 | x2 | y_or | y_not_or | y_and | y_not_and | y_xor
 +
    example = [
 +
        [-1, 0, 0, 0, 1, 0, 1, 0],
 +
        [-1, 0, 1, 1, 0, 0, 1, 1],
 +
        [-1, 1, 0, 1, 0, 0, 1, 1],
 +
        [-1, 1, 1, 1, 0, 1, 0, 0]
 +
    ]
 +
 +
    def __init__(self, option):
 +
        self.option = option
 +
        if self.option < 0 or self.option > 4:
 +
            self.option = 0
 +
        self.option += 3
 +
        for i in range(3):
 +
            self.weight += [randint(1, 100) / 100.0]
 +
 +
    def adjust_weight(self, e, out):
 +
        for i in range(3):
 +
            self.weight[i] += self.N * \
 +
                (self.example[e][self.option] - out) * self.example[e][i]
 +
 +
    def training(self):
 +
        trained = False
 +
        epoch = 0
 +
        while not trained and epoch < self.epoch:
 +
            trained = True
 +
            for i in range(4):
 +
                y = self.net(self.example[i][1], self.example[i][2])
 +
                if y != self.example[i][self.option]:
 +
                    self.adjust_weight(i, y)
 +
                    trained = False
 +
            epoch += 1
 +
        if trained:
 +
            print("Trained in", epoch, "epochs.")
 +
            return True
 +
        else:
 +
            print("There was not possible to learn.")
 +
            return False
 +
 +
    def net(self, x1, x2):
 +
        y = (-1 * self.weight[0]) + \
 +
            (x1 * self.weight[1]) + (x2 * self.weight[2])
 +
        if y > 0:
 +
            return 1
 +
        return 0
 +
 +
 +
# MAIN PROGRAM -----------------------------------------
 +
def main():
 +
    print("PERCEPTRON: training to logic ports")
 +
    o = 0
 +
    while o != 9:
 +
        print("Choose operation [ 0: OR | 1: NOT OR |",
 +
              "2: AND | 3: NOT AND | 4: XOR ] - Or 9 to exit")
 +
        o = int(input("operation: "))
 +
        if o != 9:
 +
            neuron = Perceptron(o)
 +
            if neuron.training():
 +
                exit_loop = False
 +
                while not exit_loop:
 +
                    print("-- Type 0 or 1 - Or 9 to other training")
 +
                    x1 = int(input("x1: "))
 +
                    if x1 != 9:
 +
                        x2 = int(input("x2: "))
 +
                        y = neuron.net(x1, x2)
 +
                        print("y = ", y)
 +
                    else:
 +
                        exit_loop = True
 +
    print("Terminated...")
 +
 +
 +
# -------------------------------------------------------
 +
if __name__ == "__main__":
 +
    main()
 +
</syntaxhighlight>
  
 
= Neurônio Artificial Porta OU em C++11=
 
= Neurônio Artificial Porta OU em C++11=

Edição das 14h28min de 28 de abril de 2022

Links relacionados: Inteligência Artificial

Neurônio Artificial Portas Lógicas em Python

 1"""
 2PROGRAM: Perceptron
 3author: Saulo Popov Zambiasi
 4created: 2019.05.17
 5modified: 2022.04.28
 6"""
 7from random import *
 8
 9
10class Perceptron:
11    N = 0.01
12    epoch = 100
13    weight = []
14    option = 0
15    # example by columns
16    # bias (-1) | x1 | x2 | y_or | y_not_or | y_and | y_not_and | y_xor
17    example = [
18        [-1, 0, 0, 0, 1, 0, 1, 0],
19        [-1, 0, 1, 1, 0, 0, 1, 1],
20        [-1, 1, 0, 1, 0, 0, 1, 1],
21        [-1, 1, 1, 1, 0, 1, 0, 0]
22    ]
23
24    def __init__(self, option):
25        self.option = option
26        if self.option < 0 or self.option > 4:
27            self.option = 0
28        self.option += 3
29        for i in range(3):
30            self.weight += [randint(1, 100) / 100.0]
31
32    def adjust_weight(self, e, out):
33        for i in range(3):
34            self.weight[i] += self.N * \
35                (self.example[e][self.option] - out) * self.example[e][i]
36
37    def training(self):
38        trained = False
39        epoch = 0
40        while not trained and epoch < self.epoch:
41            trained = True
42            for i in range(4):
43                y = self.net(self.example[i][1], self.example[i][2])
44                if y != self.example[i][self.option]:
45                    self.adjust_weight(i, y)
46                    trained = False
47            epoch += 1
48        if trained:
49            print("Trained in", epoch, "epochs.")
50            return True
51        else:
52            print("There was not possible to learn.")
53            return False
54
55    def net(self, x1, x2):
56        y = (-1 * self.weight[0]) + \
57            (x1 * self.weight[1]) + (x2 * self.weight[2])
58        if y > 0:
59            return 1
60        return 0
61
62
63# MAIN PROGRAM -----------------------------------------
64def main():
65    print("PERCEPTRON: training to logic ports")
66    o = 0
67    while o != 9:
68        print("Choose operation [ 0: OR | 1: NOT OR |",
69              "2: AND | 3: NOT AND | 4: XOR ] - Or 9 to exit")
70        o = int(input("operation: "))
71        if o != 9:
72            neuron = Perceptron(o)
73            if neuron.training():
74                exit_loop = False
75                while not exit_loop:
76                    print("-- Type 0 or 1 - Or 9 to other training")
77                    x1 = int(input("x1: "))
78                    if x1 != 9:
79                        x2 = int(input("x2: "))
80                        y = neuron.net(x1, x2)
81                        print("y = ", y)
82                    else:
83                        exit_loop = True
84    print("Terminated...")
85
86
87# -------------------------------------------------------
88if __name__ == "__main__":
89    main()

Neurônio Artificial Porta OU em C++11

  1#include <iostream>
  2
  3using namespace std;
  4
  5class Neuronio
  6{
  7private:
  8	int   saida;
  9	float N = 0.01;
 10	int   epocas = 100;
 11	float peso[3];
 12	int   exemplo[4][4]
 13	{
 14		{ -1, 0, 0, 0 },
 15		{ -1, 0, 1, 1 },
 16		{ -1, 1, 0, 1 },
 17		{ -1, 1, 1, 1 }
 18	};
 19public:
 20	Neuronio();
 21	void transferencia();
 22	void treinamento_pesos(int j);
 23	void treinamento();
 24	int net(int j);
 25	int executar(int x[2]);
 26};
 27
 28Neuronio::Neuronio()
 29{
 30	for (int i = 0; i < 3; i++)
 31	{
 32		peso[i] = ((rand() % 200) - 100) / 100.0;
 33	}
 34}
 35
 36int Neuronio::net(int j)
 37{
 38	float y = 0;
 39	for (int i = 0; i < 3; i++)
 40	{
 41		y += exemplo[j][i] * peso[i];
 42	}
 43	if (y > 0)
 44	{
 45		return 1;
 46	}
 47	return 0;
 48}
 49
 50void Neuronio::treinamento_pesos(int j)
 51{
 52	for (int i = 0; i < 3; i++)
 53	{
 54		peso[i] = peso[i] + (N * (exemplo[j][3] - saida) * exemplo[j][i]);
 55	}
 56}
 57
 58void Neuronio::treinamento()
 59{
 60	int e = 0;
 61	bool errou;
 62	do
 63	{
 64		cout << "Epoca(" << e << ")" << endl;
 65		errou = false;
 66		for (int i = 0; i < 4; i++)
 67		{
 68			saida = net(i);
 69			if (saida != exemplo[i][3])
 70			{
 71				treinamento_pesos(i);
 72				errou = true;
 73			}
 74			cout << "...Pesos: " << peso[0] << " " << peso[1] << " " << peso[2] << endl;
 75		}
 76		e++;
 77	}
 78	while((e < epocas) && (errou));
 79}
 80
 81int Neuronio::executar(int x[2])
 82{
 83	cout << "-1 * " << peso[0] << " + " << x[0] << " * " << peso[1] << " + " << x[1] << " + " << peso[2] << endl;
 84	float y = (-1 * peso[0]) + (x[0] * peso[1]) + (x[1] * peso[2]);
 85	if (y > 0)
 86	{
 87		return 1;
 88	}
 89	return 0;
 90}
 91
 92int main()
 93{
 94	Neuronio n;
 95	n.treinamento();
 96	int continuar = 1;
 97	while (continuar == 1)
 98	{
 99		int in[2];
100		cout << "x1: ";
101		cin >> in[0];
102		cout << "x2: ";
103		cin >> in[1];
104		cout << "retorno: " << n.executar(in) << endl;
105		cout << "continuar? ";
106		cin >> continuar;
107	}
108	return 0;
109}

Neurônio Artificial para Portas Lógicas em Java

  1import java.util.*;
  2
  3public class Perceptron {
  4	private double[] w = new double[3];
  5	private double y = 0;
  6	private double N = 0.1;
  7	private final int BIAS = -1;
  8	private final int MAX_EPOCAS = 1000;
  9	private int operacao = 0;
 10	private Random rand = new Random();
 11	Scanner entrada;
 12	private int[][] e = {
 13			{ 0, 0, 0, 0, 1, 1, 0 },
 14			{ 0, 1, 1, 0, 0, 1, 1 },
 15			{ 1, 0, 1, 0, 0, 1, 1 },
 16			{ 1, 1, 1, 1, 0, 0, 0 }
 17			};
 18
 19	Perceptron(int op) {
 20		if ((op >= 0) && (op < 5)) {
 21			operacao = op + 2;
 22		}
 23		for (int i = 0; i < 3; i++) {
 24			w[i] = ((rand.nextInt(20) + 1) / 10) - 1;
 25		}
 26		entrada = new Scanner(System.in);
 27	}
 28
 29	int executar(int x1, int x2) {
 30		// Somatorio NET
 31		y = ((BIAS) * w[0]) + (x1 * w[1]) + (x2 * w[2]);
 32		// Funcao de Transferencia
 33		if (y > 0) {
 34			return 1;
 35		}
 36		return 0;
 37	}
 38
 39	boolean treinar() {
 40		boolean treinou;
 41		int epoca = 0;
 42		do {
 43			treinou = true;
 44			for (int i = 0; i < 4; i++) {
 45				int s = executar(e[i][0], e[i][1]);
 46				if (s != e[i][operacao]) {
 47					corrigirPeso(i, s);
 48					treinou = false;
 49				}
 50			}
 51			epoca++;
 52		} while ((treinou == false) && (epoca < MAX_EPOCAS));
 53		System.out.println("O algoritmo treinou " + epoca + " epocas...");
 54		if (treinou == false) {
 55			System.out.println("O algoritmo nao conseguiu convergir...");
 56		}
 57		return treinou;
 58	}
 59
 60	void corrigirPeso(int exemplo, int saida) {
 61		w[0] = w[0] + (N * (e[exemplo][operacao] - saida) * (BIAS));
 62		w[1] = w[1] + (N * (e[exemplo][operacao] - saida) * e[exemplo][0]);
 63		w[2] = w[2] + (N * (e[exemplo][operacao] - saida) * e[exemplo][1]);
 64	}
 65
 66	void testar() {
 67		boolean sair = false;
 68		while (!sair) {
 69			System.out.println("-- Digite 9 para sair --");
 70			System.out.print("x1 : ");
 71			int x1 = entrada.nextInt();
 72			if (x1 == 9) {
 73				sair = true;
 74			} else {
 75				System.out.print("x2 : ");
 76				int x2 = entrada.nextInt();
 77				int y = executar(x1, x2);
 78				System.out.println(" y : " + y);
 79			}
 80		}
 81	}
 82
 83	public static void main(String[] arguments) {
 84		boolean erro = false;
 85		if (arguments.length == 1) {
 86			int op = Integer.valueOf(arguments[0]);
 87			erro = ((op < 0) || (op > 4));
 88			if (!erro) {
 89				Perceptron p = new Perceptron(op);
 90				if (p.treinar()) {
 91					p.testar();
 92				}
 93			} 
 94		} else {
 95			erro = true;
 96		}
 97		if (erro) {
 98			System.out.println("Use: Perceptron <operacao>");
 99			System.out.println("operacao:");
100			System.out.println("\t0 - ou");
101			System.out.println("\t1 - e");
102			System.out.println("\t2 - nao ou");
103			System.out.println("\t3 - nao e");
104			System.out.println("\t4 - ou exclusivo");
105		}
106	}
107}